Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
EMBO J ; 43(8): 1545-1569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485816

RESUMO

Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Sobrevivência Celular , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , NAD
2.
BMJ Case Rep ; 17(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216163

RESUMO

Fungal bezoars (fungal balls) are rarely reported in the upper or lower urinary tract. They can be the cause of severe morbidities such as urinary tract obstruction, renal failure and fungaemia. Hereby, we present a rare case of a male patient who underwent transurethral resection of bladder tumour (TURBT), and during his postoperative period, he was diagnosed with bladder fungal bezoars adherent to his resection area. The fungal bezoars were covering an extended area of the right lateral bladder wall, including the right ureteric orifice and causing right urinary tract obstruction. Those findings were manifested only after a relooked cystoscopy and histological evaluation.We aim to present a rare example of fungal bezoars mimicking other pathologies in the urinary tract and review the current literature for similar documentation. We underline the necessity of follow-up examinations for urologists performing TURBT surgeries, including urinalysis, imaging modalities and cystoscopy.


Assuntos
Bezoares , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Masculino , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/cirurgia , Carcinoma de Células de Transição/complicações , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/cirurgia , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/cirurgia , Bexiga Urinária/patologia , Bezoares/patologia , Cicatriz/patologia
3.
Br J Surg ; 111(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37951600

RESUMO

BACKGROUND: There is a need to standardize training in robotic surgery, including objective assessment for accreditation. This systematic review aimed to identify objective tools for technical skills assessment, providing evaluation statuses to guide research and inform implementation into training curricula. METHODS: A systematic literature search was conducted in accordance with the PRISMA guidelines. Ovid Embase/Medline, PubMed and Web of Science were searched. Inclusion criterion: robotic surgery technical skills tools. Exclusion criteria: non-technical, laparoscopy or open skills only. Manual tools and automated performance metrics (APMs) were analysed using Messick's concept of validity and the Oxford Centre of Evidence-Based Medicine (OCEBM) Levels of Evidence and Recommendation (LoR). A bespoke tool analysed artificial intelligence (AI) studies. The Modified Downs-Black checklist was used to assess risk of bias. RESULTS: Two hundred and forty-seven studies were analysed, identifying: 8 global rating scales, 26 procedure-/task-specific tools, 3 main error-based methods, 10 simulators, 28 studies analysing APMs and 53 AI studies. Global Evaluative Assessment of Robotic Skills and the da Vinci Skills Simulator were the most evaluated tools at LoR 1 (OCEBM). Three procedure-specific tools, 3 error-based methods and 1 non-simulator APMs reached LoR 2. AI models estimated outcomes (skill or clinical), demonstrating superior accuracy rates in the laboratory with 60 per cent of methods reporting accuracies over 90 per cent, compared to real surgery ranging from 67 to 100 per cent. CONCLUSIONS: Manual and automated assessment tools for robotic surgery are not well validated and require further evaluation before use in accreditation processes.PROSPERO: registration ID CRD42022304901.


BACKGROUND: Robotic surgery is increasingly used worldwide to treat many different diseases. The robot is controlled by a surgeon, which may give them greater precision and better outcomes for patients. However, surgeons' robotic skills should be assessed properly, to make sure patients are safe, to improve feedback and for exam assessments for certification to indicate competency. This should be done by experts, using assessment tools that have been agreed upon and proven to work. AIM: This review's aim was to find and explain which training and examination tools are best for assessing surgeons' robotic skills and to find out what gaps remain requiring future research. METHOD: This review searched for all available studies looking at assessment tools in robotic surgery and summarized their findings using several different methods. FINDINGS AND CONCLUSION: Two hundred and forty-seven studies were looked at, finding many assessment tools. Further research is needed for operation-specific and automatic assessment tools before they should be used in the clinical setting.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Procedimentos Cirúrgicos Robóticos/educação , Inteligência Artificial , Competência Clínica , Laparoscopia/educação
4.
Sensors (Basel) ; 23(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960645

RESUMO

Microsurgery serves as the foundation for numerous operative procedures. Given its highly technical nature, the assessment of surgical skill becomes an essential component of clinical practice and microsurgery education. The interaction forces between surgical tools and tissues play a pivotal role in surgical success, making them a valuable indicator of surgical skill. In this study, we employ six distinct deep learning architectures (LSTM, GRU, Bi-LSTM, CLDNN, TCN, Transformer) specifically designed for the classification of surgical skill levels. We use force data obtained from a novel sensorized surgical glove utilized during a microsurgical task. To enhance the performance of our models, we propose six data augmentation techniques. The proposed frameworks are accompanied by a comprehensive analysis, both quantitative and qualitative, including experiments conducted with two cross-validation schemes and interpretable visualizations of the network's decision-making process. Our experimental results show that CLDNN and TCN are the top-performing models, achieving impressive accuracy rates of 96.16% and 97.45%, respectively. This not only underscores the effectiveness of our proposed architectures, but also serves as compelling evidence that the force data obtained through the sensorized surgical glove contains valuable information regarding surgical skill.


Assuntos
Aprendizado Profundo , Microcirurgia , Microcirurgia/educação , Microcirurgia/métodos , Competência Clínica , Luvas Cirúrgicas
5.
iScience ; 26(2): 106040, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36844450

RESUMO

Dietary nutrient availability and gene expression, together, influence tissue metabolic activity. Here, we explore whether altering dietary nutrient composition in the context of mouse liver cancer suffices to overcome chronic gene expression changes that arise from tumorigenesis and western-style diet (WD). We construct a mouse genome-scale metabolic model and estimate metabolic fluxes in liver tumors and non-tumoral tissue after computationally varying the composition of input diet. This approach, called Systematic Diet Composition Swap (SyDiCoS), revealed that, compared to a control diet, WD increases production of glycerol and succinate irrespective of specific tissue gene expression patterns. Conversely, differences in fatty acid utilization pathways between tumor and non-tumor liver are amplified with WD by both dietary carbohydrates and lipids together. Our data suggest that combined dietary component modifications may be required to normalize the distinctive metabolic patterns that underlie selective targeting of tumor metabolism.

7.
Commun Biol ; 5(1): 877, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028752

RESUMO

α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.


Assuntos
Aminoácidos Dicarboxílicos , Ácidos Cetoglutáricos , Biologia , Alvo Mecanístico do Complexo 1 de Rapamicina
8.
J Surg Case Rep ; 2022(4): rjac046, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35422996

RESUMO

Urothelial carcinoma of the urinary bladder is a common clinical entity. Recently, researchers focused on the emerging clinical significance of histologic variants, because they may need special therapy and their prognosis differs. Hereby, we describe a case of a giant cell osteoclast-like urothelial carcinoma of the urinary bladder.

9.
Curr Oncol ; 28(6): 4702-4708, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34898568

RESUMO

The renin-angiotensin system (RAS), besides being a major regulator of blood pressure, is also involved in tumor angiogenesis. Emerging evidence suggests a correlation between the use of pharmacologic RAS inhibitors and a delay in urothelial bladder cancer (BC) progression. However, it is unknown whether RAS gene variants may predispose to the development of BC. This study examined the association of RAS single nucleotide polymorphisms (SNPs) including AT1R rs5186, AT2R rs11091046, REN rs12750834, ANG rs4762, and ANG rs699 with the risk of developing non-invasive BC. Peripheral blood samples from 73 patients with T1 urothelial BC (66 men, seven women) and an equal number of healthy subjects (control group) were collected. The TT genotype of the REN rs12750834 SNP (OR: 2.8 [1.3-6.05], p = 0.008) and to a lesser extent the presence of the T allele (OR: 2.3 [1.2-4.48], p = 0.01) conferred a higher risk of BC. The highest risk for BC within SNP carriers of the RAS system was associated with the presence of the CC genotype (OR: 17.6 [7.5-41.35], p < 0.001) and C allele (OR: 17.7 [8.8-35.9], p < 0.001) of the ANG rs699 SNP. The presence of the AT2R rs11091046 SNP, particularly the AA genotype, was associated with a protective effect against developing BC (OR: 0.268 [0.126-057], p < 0.001). In conclusion, these results support the clinical utility of RAS gene SNPs AT2R rs11091046, REN rs12750834, and ANG rs699 in the genetic cancer risk assessment of patients and families with BC.


Assuntos
Polimorfismo de Nucleotídeo Único , Neoplasias da Bexiga Urinária , Angiotensinogênio/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Sistema Renina-Angiotensina/genética , Neoplasias da Bexiga Urinária/genética
11.
Sci Signal ; 14(697)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429381

RESUMO

Fibrosis is the final pathological outcome and major cause of morbidity and mortality in many common and chronic inflammatory, immune-mediated, and metabolic diseases. Despite the growing incidence of fibrotic diseases and extensive research efforts, there remains a lack of effective therapies that improve survival. The application of omics technologies has revolutionized our approach to identifying previously unknown therapeutic targets and potential disease biomarkers. The application of metabolomics, in particular, has improved our understanding of disease pathomechanisms and garnered a wave of scientific interest in the role of metabolism in the biology of myofibroblasts, the key effector cells of the fibrogenic response. Emerging evidence suggests that alterations in metabolism not only are a feature of but also may play an influential role in the pathogenesis of fibrosis, most notably in idiopathic pulmonary fibrosis (IPF), the most rapidly progressive and fatal of all fibrotic conditions. This review will detail the role of key metabolic pathways, their alterations in myofibroblasts, and the potential this new knowledge offers for the development of antifibrotic therapeutic strategies.


Assuntos
Fibrose Pulmonar Idiopática , Fibrose , Humanos , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/terapia , Miofibroblastos/patologia
13.
Nat Cell Biol ; 21(8): 1003-1014, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31371825

RESUMO

In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma. This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in glioblastoma reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of glioblastoma cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for the occurance of aberrant nucleolar function and increased anabolic processes in glioblastoma, which constitutes a primary event in gliomagenesis.


Assuntos
Carcinogênese/metabolismo , Glioblastoma/metabolismo , IMP Desidrogenase/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/metabolismo , Humanos , IMP Desidrogenase/genética , RNA Ribossômico/metabolismo
14.
Elife ; 82019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264961

RESUMO

Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.


Assuntos
Regulação Alostérica , Proteínas de Transporte/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Análise Mutacional de DNA , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Frutosedifosfatos/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Dinâmica Molecular , Fenilalanina/metabolismo , Multimerização Proteica , Análise Espectral , Hormônios Tireóideos/química , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
15.
Proc Natl Acad Sci U S A ; 116(25): 12452-12461, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31152137

RESUMO

Tumor hypoxia is associated with poor patient outcomes in estrogen receptor-α-positive (ERα+) breast cancer. Hypoxia is known to affect tumor growth by reprogramming metabolism and regulating amino acid (AA) uptake. Here, we show that the glutamine transporter, SNAT2, is the AA transporter most frequently induced by hypoxia in breast cancer, and is regulated by hypoxia both in vitro and in vivo in xenografts. SNAT2 induction in MCF7 cells was also regulated by ERα, but it became predominantly a hypoxia-inducible factor 1α (HIF-1α)-dependent gene under hypoxia. Relevant to this, binding sites for both HIF-1α and ERα overlap in SNAT2's cis-regulatory elements. In addition, the down-regulation of SNAT2 by the ER antagonist fulvestrant was reverted in hypoxia. Overexpression of SNAT2 in vitro to recapitulate the levels induced by hypoxia caused enhanced growth, particularly after ERα inhibition, in hypoxia, or when glutamine levels were low. SNAT2 up-regulation in vivo caused complete resistance to antiestrogen and, partially, anti-VEGF therapies. Finally, high SNAT2 expression levels correlated with hypoxia profiles and worse outcome in patients given antiestrogen therapies. Our findings show a switch in the regulation of SNAT2 between ERα and HIF-1α, leading to endocrine resistance in hypoxia. Development of drugs targeting SNAT2 may be of value for a subset of hormone-resistant breast cancer.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/patologia , Hipóxia Celular , Resistencia a Medicamentos Antineoplásicos , Moduladores de Receptor Estrogênico/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Microambiente Tumoral
16.
Sci Signal ; 12(582)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113850

RESUMO

The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)-producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor-ß1 (TGF-ß1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-ß1-induced ATF4 production depended on cooperation between canonical TGF-ß1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-ß1-mTORC1-ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Colágeno/biossíntese , Glicina/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina/biossíntese , Fator de Crescimento Transformador beta1/farmacologia , Fator 4 Ativador da Transcrição/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Nat Chem Biol ; 14(11): 1032-1042, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297875

RESUMO

α-Ketoglutarate (αKG) is a key node in many important metabolic pathways. The αKG analog N-oxalylglycine (NOG) and its cell-permeable prodrug dimethyloxalylglycine (DMOG) are extensively used to inhibit αKG-dependent dioxygenases. However, whether NOG interference with other αKG-dependent processes contributes to its mode of action remains poorly understood. Here we show that, in aqueous solutions, DMOG is rapidly hydrolyzed, yielding methyloxalylglycine (MOG). MOG elicits cytotoxicity in a manner that depends on its transport by monocarboxylate transporter 2 (MCT2) and is associated with decreased glutamine-derived tricarboxylic acid-cycle flux, suppressed mitochondrial respiration and decreased ATP production. MCT2-facilitated entry of MOG into cells leads to sufficiently high concentrations of NOG to inhibit multiple enzymes in glutamine metabolism, including glutamate dehydrogenase. These findings reveal that MCT2 dictates the mode of action of NOG by determining its intracellular concentration and have important implications for the use of (D)MOG in studying αKG-dependent signaling and metabolism.


Assuntos
Aminoácidos Dicarboxílicos/química , Ácidos Cetoglutáricos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Trifosfato de Adenosina/química , Animais , Fenômenos Bioquímicos , Bovinos , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Hidrólise , Concentração Inibidora 50 , Células MCF-7 , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Oxigênio/química , Puromicina/química , Transdução de Sinais , Ácidos Tricarboxílicos/química
18.
FEBS J ; 284(18): 2955-2980, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28715126

RESUMO

Changes in allosteric regulation of glycolytic enzymes have been linked to metabolic reprogramming involved in cancer. Remarkably, allosteric mechanisms control enzyme function at significantly shorter time-scales compared to the long-term effects of metabolic reprogramming on cell proliferation. It remains unclear if and how the speed and reversibility afforded by rapid allosteric control of metabolic enzymes is important for cell proliferation. Tools that allow specific, dynamic modulation of enzymatic activities in mammalian cells would help address this question. Towards this goal, we have used molecular dynamics simulations to guide the design of mPKM2 internal light/oxygen/voltage-sensitive domain 2 (LOV2) fusion at position D24 (PiL[D24]), an engineered pyruvate kinase M2 (PKM2) variant that harbours an insertion of the light-sensing LOV2 domain from Avena Sativa within a region implicated in allosteric regulation by fructose 1,6-bisphosphate (FBP). The LOV2 photoreaction is preserved in the PiL[D24] chimera and causes secondary structure changes that are associated with a 30% decrease in the Km of the enzyme for phosphoenolpyruvate resulting in increased pyruvate kinase activity after light exposure. Importantly, this change in activity is reversible upon light withdrawal. Expression of PiL[D24] in cells leads to light-induced increase in labelling of pyruvate from glucose. PiL[D24] therefore could provide a means to modulate cellular glucose metabolism in a remote manner and paves the way for studying the importance of rapid allosteric phenomena in the regulation of metabolism and enzyme control.


Assuntos
Apoproteínas/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Frutosedifosfatos/química , Proteínas de Membrana/química , Proteínas de Plantas/química , Proteínas Recombinantes de Fusão/química , Hormônios Tireóideos/química , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Avena/química , Avena/genética , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Frutosedifosfatos/metabolismo , Expressão Gênica , Humanos , Cinética , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Especificidade por Substrato , Termodinâmica , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
19.
Curr Opin Biotechnol ; 48: 102-110, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28431259

RESUMO

Alterations in metabolic processes have been linked to various diseases, including cancer. Although gene expression can dictate long-term metabolic adaptation, many metabolic changes found in cancer are associated with altered allosteric properties of the underlying enzymes. Small molecule-protein interactions and intracellular signalling converge to orchestrate these allosteric mechanisms, which, emerging evidence suggests, constitute a promising therapeutic avenue. In this review we focus on glucose and energy metabolism to illustrate the role of allostery in cancer physiology and we discuss approaches to streamline the process of targeting aberrant allosteric pathways with small molecules.


Assuntos
Desenho de Fármacos , Metabolismo Energético/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Regulação Alostérica , Humanos
20.
Mol Cell ; 65(6): 999-1013.e7, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306514

RESUMO

PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.


Assuntos
Metabolismo Energético , Neoplasias/enzimologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/farmacologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA